Cover von Auto-Grader - Auto-Grading Free Text Answers wird in neuem Tab geöffnet

Auto-Grader - Auto-Grading Free Text Answers

Verfasser: Suche nach diesem Verfasser Richner, Robin. (Verfasser)
Medienkennzeichen: Lehrbuch
Jahr: 2022.
Verlag: Wiesbaden :, Springer Fachmedien Wiesbaden :
Mediengruppe: E-Book
verfügbar

Exemplare

ZweigstelleStandorteStandort 2VorbestellungenFristStatus
Zweigstelle: Online Standorte: Standort 2: Vorbestellungen: 0 Frist: Status: Verfügbar

Inhalt

Teachers spend a great amount of time grading free text answer type questions. To encounter this challenge an auto-grader system is proposed. The thesis illustrates that the auto-grader can be approached with simple, recurrent, and Transformer-based neural networks. Hereby, the Transformer-based models has the best performance. It is further demonstrated that geometric representation of question-answer pairs is a worthwhile strategy for an auto-grader. Finally, it is indicated that while the auto-grader could potentially assist teachers in saving time with grading, it is not yet on a level to fully replace teachers for this task. About the author Robin Richner was working as a Machine Learning Engineer in the edtech industry exploring ways to help teachers in their daily life. He now moved on to the web3 industry.

Details

Verfasser: Suche nach diesem Verfasser Richner, Robin. (Verfasser)
Medienkennzeichen: Lehrbuch
Jahr: 2022.
Verlag: Wiesbaden :, Springer Fachmedien Wiesbaden :
opens in new tab
Suche nach dieser Systematik
Interessenkreis: Suche nach diesem Interessenskreis KJD, BUS041000
ISBN: 9783658392031
Beschreibung: 1st ed. 2022., XIII, 96 p. 39 illus., 34 illus. in color. Textbook for German language market., online resource.
Reihe: BestMasters,
Schlagwörter: Innovation and Technology Management., Teachers / Training of., Teaching and Teacher Education., Technological innovations.
Beteiligte Personen: Suche nach dieser Beteiligten Person SpringerLink (Online service) (Mitwirkender)
Mediengruppe: E-Book